Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Molecules ; 28(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985500

RESUMO

(1) Background: Malaria, a vector-borne infectious disease, is caused by parasites of the Plasmodium genus, responsible for increased extreme morbidity and mortality rates. Despite advances in approved vaccines, full protection has not yet been achieved upon vaccination, thus the development of more potent and safe immuno-stimulating agents for malaria prevention is a goal to be urgently accomplished. We have focused our research on a strategy to identify Plasmodium spp. epitopes by naturally acquired human antibodies and rodent malaria infection models immunized with site-directed non-natural antigens. (2) Methods: Some predictive algorithms and bioinformatics tools resembling different biological environments, such as phagosome-lysosome proteolytic degradation, affinity, and the high frequency of malaria-resistant and -sensitive HLA-II alleles were regarded for the proper selection of epitopes and potential testing. Each epitope's binding profile to both host cells and HLA-II molecules was considered for such initial screening. (3) Results: Once selected, we define each epitope-peptide to be synthesized in terms of size and hydrophobicity, and introduced peptide-bond surrogates and non-natural amino acids in a site-directed fashion, and then they were produced by solid-phase peptide synthesis. Molecules were then tested by their antigenic and immunogenic properties compared to human sera from Colombian malaria-endemic areas. The antigenicity and protective capacity of each epitope-peptide in a rodent infection model were examined. The ability of vaccinated mice after being challenged with P. berghei ANKA and P. yoelii 17XL to control malaria led to the determination of an immune stimulation involving Th1 and Th1/Th2 mechanisms. In silico molecular dynamics and modeling provided some interactions insights, leading to possible explanations for protection due to immunization. (4) Conclusions: We have found evidence for proposing MSP1-modified epitopes to be considered as neutralizing antibody stimulators that are useful as probes for the detection of Plasmodium parasites, as well as for sub-unit components of a site-directed designed malaria vaccine candidate.


Assuntos
Malária Falciparum , Malária , Parasitos , Peptidomiméticos , Humanos , Animais , Camundongos , Epitopos , Proteína 1 de Superfície de Merozoito , Plasmodium falciparum , Antígenos de Protozoários , Proteínas de Protozoários/química , Malária Falciparum/prevenção & controle , Malária/prevenção & controle , Vacinação , Imunoglobulinas , Peptídeos
2.
Bol. latinoam. Caribe plantas med. aromát ; 21(3): 309-322, mayo 2022. tab
Artigo em Inglês | LILACS | ID: biblio-1396871

RESUMO

This paper describes the evaluation of the antimicrobial and hemolytic activity of the hexane, dichloromethane, ethyl acetate and methanol extracts from seeds and epicarps of Garcinia madruno; as well garcinol, morelloflavone and volkensiflavone isolated from the same species. In the preliminary test of bacterial susceptibility, hexane extracts from seeds and epicarps and the three compounds tested only displayed inhibitory growth effect against Gram-positive bacteria. The minimum inhibitory concentrations of extract and compounds ranging from 86.6 to 1253.4 µg/mL. The hemolytic activity was assessed; however, except for the methanol extract from seeds, none of the samples studied induced hemolysis. Thus, our results suggest that extracts and compounds from G. madruno have the potential to be used in the control of pathologies associated to Gram-positive bacteria. This is the first report of the antimicrobial and hemolytic activity of extracts of different polarity obtained from seeds and epicarps of this edible species.


El presente artículo describe la evaluación de la actividad antimicrobiana y hemolítica de los extractos de hexano, diclorometano, acetato de etilo y metanol, obtenidos de la semilla y el epicarpio de Garcinia madruno; así como de garcinol, morelloflavona y volkensiflavona; aislados de la misma especie. En el ensayo de susceptibilidad bacteriana, tanto el extracto de hexano obtenido a partir de la semilla y el epicarpio, y los tres compuestos aislados, únicamente mostraron actividad inhibitoria del crecimiento contra bacterias Gram-positivas. La concentración mínima inhibitoria presentó valores entre 86.6 y 1253.4 µg/mL. También se estableció la actividad hemolítica; sin embargo, con excepción del extracto metanólico obtenido a partir de las semillas, ninguna de las muestras evaluadas indujo hemólisis. Por lo tanto, los resultados sugieren que los extractos y compuestos de G. madruno tienen el potencial de ser usados en el control de bacterias Gram-positivas asociadas a diversas patologías. Este es el primer reporte de actividad antimicrobiana y hemolítica de extractos de diferente polaridad obtenidos de las semillas y epicarpios de esta especie comestible.


Assuntos
Extratos Vegetais/farmacologia , Garcinia/química , Hemolíticos/farmacologia , Antibacterianos/farmacologia , Sementes/química , Terpenos/análise , Bactérias/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Biflavonoides/análise
3.
J Vector Borne Dis ; 57(2): 170-175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34290162

RESUMO

BACKGROUND & OBJECTIVES: In Colombian Amazonia, Uitoto indigenous people use a preparation of Curarea toxicofera (Menispermaceae) to prevent and treat malaria. To open the way for the production of a standardized herbal remedy, we compared the activity of the traditional preparation with laboratory preparations. METHODS: People were interviewed on their mode of use and preparation of what is considered the best remedy against fevers in this area. The herbal remedy was prepared according to the healer's recommendations. The plant was also submitted to continuous distillation and percolation extraction. The preparations were then tested against Plasmodium falciparum, in vitro. Traditional preparation and extract obtained by percolation were tested on Plasmodium berghei infected mice. Chemical profiles were also explored by thin-layer chromatography. RESULTS: Yields of extraction were around 7% in the preparations (percolation was the most efficient). The phytochemical profile showed a mix of steroids, flavonoids and alkaloids qualitatively similar in all preparations. In vitro, the extracts showed inhibitory concentration 50 <10µg/mL: the traditional preparation was almost three times less active than laboratory preparations. In vivo, percolation was also more active than traditional preparation, inhibiting 78% of the parasite growth at 400mg/kg/day by oral route. INTERPRETATION & CONCLUSION: Pharmacological activities suggest that both the original remedy (prepared according to traditional pharmacopeia) and the extracts obtained by percolation extraction exhibit relevant antiparasitic activity. C. toxicofera should therefore be considered for the elaboration of an improved traditional medicine by implementing toxicological studies and carefully following quality control guidelines for its preparation.


Assuntos
Antimaláricos/farmacologia , Malária/tratamento farmacológico , Menispermaceae/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Plasmodium berghei/efeitos dos fármacos , Animais , Colômbia , Humanos , Malária/parasitologia , Medicina Tradicional , Camundongos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Plantas Medicinais , Plasmodium falciparum/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...